
FTC-TD-0004-Rev-001-IRSeeker

Using IR Beacons and IR Seeker

FTC Technical Document

Thomas Eng

9/12/2012

FTC-TD-0004-Rev-001-IRSeeker Page 1 of 16 9/14/2012 10:54:00 AM

“Seeing” the Light…

Background
The 2012-2013 FIRST Tech Challenge Ring It Up! provides infrared (IR) beacons that can be used as

navigational aids for the autonomous operation of a robot. The light that is emitted by these beacons is

not visible to the human eye. A special device, such as the HiTechnic IR Seeker (v2), can be used to

detect the IR energy and navigate towards the beacon. This document outlines the basic use of the IR

beacon and Seeker sensor.

Components

IR Beacon
The IR Beacon is made by HiTechnic (part number FTCBCN). It is powered by a 9V battery and is

equipped with two status LEDs and three IR LEDs. The red LED illuminates when the battery is running

low. The green LED indicates that power is on. The three IR LEDs flash on and off at a frequency of 1200

Hz. The light from the IR LEDs is not visible to the human eye, but can be detected by devices such as

the HiTechnic IR Seeker sensor, or even a common digital camera that does not have an IR filter

installed.

Figure 1 - Hitechnic IR Beacon (Part # FTCBCN)

The IR beacon has a switch to power the unit on or off. A fresh 9V battery should be sufficient to power

the beacon continuously for several hours (approximately 4 according to the instruction sheet).

Competition organizers, however, should keep a reserve supply of fresh 9V alkaline batteries on hand

during a match.

Note that unlike the light emitted by a traditional incandescent light bulb, the light from the IR LEDs is

not omnidirectional. The strongest intensity will be measured when the sensor is directly facing an LED.

The two outer IR LEDs on the beacon have been intentionally bent inwards at the factory to provide a

stronger signal when the detector is facing the beacon at an indirect angle.

FTC-TD-0004-Rev-001-IRSeeker Page 2 of 16 9/14/2012 10:54:00 AM

IR Seeker Sensor
HiTechnic makes a sensor known as the IR Seeker (v2, part number NSK1042) that can be used to detect

and navigate towards an infrared source of energy. The sensor detects un-modulated (DC) infrared

energy, such as the light emitted from the sun or an IR heat lamp. The sensor also detects modulated

(AC) IR signals, such as the light that is pulsed from the IR beacon. In AC mode, the sensor will “tune-in”

to IR signals pulsing at either a 1200 Hz or 600 Hz frequency and ignore other IR signals. For the FTC

competitions, the IR beacons pulse at 1200 Hz, so the IR seekers should be set to the 1200 Hz AC mode.

Figure 2 - HiTechnic IR Seeker v2

The IR Seeker is equipped with five internal infrared detectors. Each detector monitors a specific sector

around the Seeker and provides an output value of 0 to 255, with 0 indicating no measured signal and

255 indicating the highest measurable value.

Figure 3 – The IR Seeker has 5 Internal Detectors with 5 Sectors of Coverage

The IR Seeker also provides directional information. It returns a value from 0 to 9. A value of 0 implies

that an IR source was not detected. A value of 1 to 9 corresponds to 1 of 9 sectors around the Seeker

(see Figure 4).

FTC-TD-0004-Rev-001-IRSeeker Page 3 of 16 9/14/2012 10:54:00 AM

Figure 4 - Seeker Provides Directional Information on the Location of the IR Signal

Note that the energy that is emitted by the IR beacon is not omnidirectional. In order to get the

strongest measured signal, it is important that the IR Seeker have the most direct line-of-sight possible.

If the IR beacon is placed at a certain height above the floor, then a robot designer should consider

placing their IR sensor at the same level, to ensure a good, direct line-of-sight to the IR LEDs. Also, in

order to measure the strongest possible signal, the IR sensor should not have any objects in the way that

obstruct the sensor’s line of sight to the LEDs.

Sample LabVIEW Programs

Displaying Output of IR Seeker Sensor
LabVIEW for NXT 2010 and later versions include the VI’s needed for using the IR Seeker v2 sensor. The

VI’s for the IR Seeker can be found in a HiTechnic sub menu for NXT I/O. Specifically, the VI’s to use the

IR Seeker can be found under the NXT Robotics -> NXT I/O -> Additional Sensors and Motors ->

HiTechnic Sensors -> HT Complete.

Figure 5 - HT Complete Menu

FTC-TD-0004-Rev-001-IRSeeker Page 4 of 16 9/14/2012 10:54:00 AM

The HiTechnic menu includes controls to configure the IR Seeker (and put it in 600 Hz or 1200 Hz

modes). It also includes controls to read data from the IR Seeker (AC or DC modes).

Figure 6 - HT Control to Read AC Data from IR Seeker

The block diagram depicted in Figure 7 is a program that continuously displays the output from the IR

Seeker onto an NXT’s LCD display. The first line of the LCD display ranges in value from 0 to 9 and

corresponds to the sector where the IR signal is the strongest (see Figure 4) with zero indicating no

source detected. The remaining lines of the LCD display show the signal strength for each of the five

internal IR detectors (numbered 0 through 4).

FTC-TD-0004-Rev-001-IRSeeker Page 5 of 16 9/14/2012 10:54:00 AM

Figure 7 - Sample LabView Program that Displays Beacon Direction and Signal Strength Array

FTC-TD-0004-Rev-001-IRSeeker Page 6 of 16 9/14/2012 10:54:00 AM

In this sample program the IR Seeker sensor is configured for sensor port 1 and set to 1200 Hz AC Mode

(see Figure 8). The AC mode output from the IR sensor is a clustered data stream. It includes an integer

value that indicates the direction of the IR source (0 means no signal, 1-9 corresponds to the sector map

in Figure 4). The AC mode output also includes output data from the five IR detectors that are inside of

the Seeker.

Figure 8 - IR Seeker is Configured for Port 1 and 1200 Hz Mode

In order to process the output from the IR Seeker, the sample program uses an Unbundle block to

separate the data for processing (see Figure 9). The directional information is sent to a Display block

which lists the directional value on line 1 of the NXT’s LCD.

Figure 9 - An Unbundle Control is Used to Extract Data from Seeker Output

The data from the Signal Strength array is sent to a series of Index Array Controls to extract the values

for the individual detectors (numbered 0 through 4). Each indexed value is then sent to a Display

control to display the value on the NXT’s LCD (see Figure 10).

Figure 10 - Index Array Control Gets Value from Array and then Passes Data to Display Control

FTC-TD-0004-Rev-001-IRSeeker Page 7 of 16 9/14/2012 10:54:00 AM

Drive to Ball Sample Program
LabVIEW for NXT 2010 also includes a sample program that shows how to use the IR Seeker sensor to

make a robot follow an infrared soccer ball. To view the sample program, select “Create Program” from

the main LabVIEW screen. A “New Program” window should appear. Select “Virtual Instruments” under

the Templates section and then expand the HiTechnic folder and select “HTIRSeekerACDriveToBall.vit”

to view the sample code (see Figure 11).

Figure 11 – Select HTIRSeekerACDriveToBall.vit

FTC-TD-0004-Rev-001-IRSeeker Page 8 of 16 9/14/2012 10:54:00 AM

The sample program shows how to take the output from the HiTechnic IR Seeker sensor and use it to

navigate towards an infrared source. If a source is not detected, the robot will point turn to the left,

looking for a signal.

Figure 12 - Sample IR Seeker LabView Program

FTC-TD-0004-Rev-001-IRSeeker Page 9 of 16 9/14/2012 10:54:00 AM

Sample ROBOTC Programs

HiTechnic ROBOTC Driver
ROBOTC includes a driver for the HiTechnic IR Seeker V2 sensor. The driver filename is “HTIRS2-

driver.h” and it resides in a subdirectory called “drivers” in the NXT sample programs subdirectory of

ROBOTC.

For a 64-bit version of Windows, the path to the 3rd party drivers should be as follows,

C:\Program Files (x86)\Robomatter Inc\ROBOTC Development

Environment\Sample Programs\NXT\3rd Party Sensor Drivers\drivers

For a 32-bit version of Windows, the path is similar, but without the (x86) designation,

C:\Program Files\Robomatter Inc\ROBOTC Development

Environment\Sample Programs\NXT\3rd Party Sensor Drivers\drivers

In ROBOTC, you can use the Detailed Preferences menu (see Figure 13) to specify the path to include the

HiTechnic drivers.

Figure 13 - Select Detailed Preferences Menu

FTC-TD-0004-Rev-001-IRSeeker Page 10 of 16 9/14/2012 10:54:00 AM

Switch to the “Directories” tab of the Detailed Preferences menu to specify the include file path for the

3rd party drivers (see Figure 14).

Figure 14 – Specify the Common Directory for User Include Files

Once you have your directory properly specified, be sure to put the following statement,

#include “HTIRS2-driver.h”

in your source code.

FTC-TD-0004-Rev-001-IRSeeker Page 11 of 16 9/14/2012 10:54:00 AM

Display IR Seeker Data
The following code (from “IRSeek.c”) is a sample program that polls the IR Seeker sensor and displays

the direction and signal strength from the 5 internal detectors on the screen. The “DC” values are the

output values for the un-modulated signal. The “AC” values are the output values for the modulated

signal (1200 Hz).

#pragma config(Sensor, S1, HTIRS2, sensorI2CCustom)

//

// IRSeek.c - a simple program to demonstrate how to use the

// HiTechnic IR Seeker V2 sensor. This program requires

// the HTIRS2-driver.h driver provided with RobotC.

//

// You can copy the "drivers" subdirectory and place it

// in the same directory as this source file. if you do,

// you can use the following #include statement to specify

// the path to the driver.

//#include "drivers/HTIRS2-driver.h"

// if you use the "drivers/HTIRS2-driver.h" line,

// then you should comment out the following line.

#include "HTIRS2-driver.h"

// sTextLines is an array of strings - used to keep

// track of if changes to display occur.

string sTextLines[8];

// function prototype

void displayText(int nLineNumber, string cChar, int nValueDC, int nValueAC);

// main task

task main ()

{

 // dc and ac directional values.

 int _dirDC = 0;

 int _dirAC = 0;

 // DC and AC values from 5 internal detectors.

 int dcS1, dcS2, dcS3, dcS4, dcS5 = 0;

 int acS1, acS2, acS3, acS4, acS5 = 0;

 // we are going to set DSP mode to 1200 Hz.

 tHTIRS2DSPMode _mode = DSP_1200;

 // attempt to set to DSP mode.

 if (HTIRS2setDSPMode(HTIRS2, _mode) == 0)

 {

 // unsuccessful at setting the mode.

 // display error message.

 eraseDisplay();

 nxtDisplayCenteredTextLine(0, "ERROR!");

 nxtDisplayCenteredTextLine(2, "Init failed!");

 nxtDisplayCenteredTextLine(3, "Connect sensor");

 nxtDisplayCenteredTextLine(4, "to Port 1.");

 // make a noise to get their attention.

 PlaySound(soundBeepBeep);

 // wait so user can read message, then leave main task.

FTC-TD-0004-Rev-001-IRSeeker Page 12 of 16 9/14/2012 10:54:00 AM

 wait10Msec(300);

 return;

 }

 // initialize the array sTextLines.

 for (int i = 0; i < 8; ++i)

 sTextLines[i] = "";

 // display some header info at top of screen

 eraseDisplay();

 nxtDisplayTextLine(0, " DC AC");

 nxtDisplayTextLine(1, "-----------------");

 // loop continuously and read from the sensor.

 while(true)

 {

 // Read the current non modulated signal direction

 _dirDC = HTIRS2readDCDir(HTIRS2);

 if (_dirDC < 0)

 break; // I2C read error occurred

 // read the current modulated signal direction

 _dirAC = HTIRS2readACDir(HTIRS2);

 if (_dirAC < 0)

 break; // I2C read error occurred

 // Read the individual signal strengths of the internal sensors

 // Do this for both unmodulated (DC) and modulated signals (AC)

 if (!HTIRS2readAllDCStrength(HTIRS2, dcS1, dcS2, dcS3, dcS4, dcS5))

 break; // I2C read error occurred

 if (!HTIRS2readAllACStrength(HTIRS2, acS1, acS2, acS3, acS4, acS5))

 break; // I2C read error occurred

 displayText(2, "D", _dirDC, _dirAC);

 displayText(3, "0", dcS1, acS1);

 displayText(4, "1", dcS2, acS2);

 displayText(5, "2", dcS3, acS3);

 displayText(6, "3", dcS4, acS4);

 displayText(7, "4", dcS5, acS5);

 // wait a little before resuming.

 wait10Msec(5);

 }

}

// Minimize LCD screen flicker by only updating LCD when data has changed

void displayText(int nLineNumber, string cChar, int nValueDC, int nValueAC)

{

 string sTemp;

 StringFormat(sTemp, "%4d %4d", nValueDC, nValueAC);

 // Check if the new line is the same as the previous one

 // Only update screen if it's different.

 if (sTemp != sTextLines[nLineNumber])

 {

 string sTemp2;

 sTextLines[nLineNumber] = sTemp;

 StringFormat(sTemp2, "%s: %s", cChar, sTemp);

 nxtDisplayTextLine(nLineNumber, sTemp2);

 }

}

FTC-TD-0004-Rev-001-IRSeeker Page 13 of 16 9/14/2012 10:54:00 AM

The code listed above will continuously display the output from the IR Seeker on the LCD.

Figure 15 – The Program IRSeek.c Continuously Displays Output from Sensor

FTC-TD-0004-Rev-001-IRSeeker Page 14 of 16 9/14/2012 10:54:00 AM

Following an IR Source
The following code (from “RoboSeek.c”) uses the IR Seeker sensor to follow an infrared source (such as

an IR soccer ball or beacon) flashing at 1200Hz.

#pragma config(Sensor, S1, HTIRS2, sensorI2CCustom)

//

// RoboSeek.c - This program uses the HiTechnic IR Seeker V2

// sensor to follow an IR source. This program requires the

// HTIRS2-driver.h driver provided with RobotC.

//

// You can copy the "drivers" subdirectory and place it

// in the same directory as this source file. if you do,

// you can use the following #include statement to specify

// the path to the driver.

//#include "drivers/HTIRS2-driver.h"

// if you use the "drivers/HTIRS2-driver.h" line,

// then you should comment out the following line.

#include "HTIRS2-driver.h"

// main task

task main ()

{

 int _dirAC = 0;

 int acS1, acS2, acS3, acS4, acS5 = 0;

 int maxSig = 0; // the max signal strength from the seeker.

 int val = 0; // the translated directional value.

 // we are going to set DSP mode to 1200 Hz.

 tHTIRS2DSPMode _mode = DSP_1200;

 // attempt to set to DSP mode.

 if (HTIRS2setDSPMode(HTIRS2, _mode) == 0)

 {

 // unsuccessful at setting the mode.

 // display error message.

 eraseDisplay();

 nxtDisplayCenteredTextLine(0, "ERROR!");

 nxtDisplayCenteredTextLine(2, "Init failed!");

 nxtDisplayCenteredTextLine(3, "Connect sensor");

 nxtDisplayCenteredTextLine(4, "to Port 1.");

 // make a noise to get their attention.

 PlaySound(soundBeepBeep);

 // wait so user can read message, then leave main task.

 wait10Msec(300);

 return;

 }

 eraseDisplay();

 // loop continuously and read from the sensor.

 while(true)

 {

 // read the current modulated signal direction

 _dirAC = HTIRS2readACDir(HTIRS2);

 if (_dirAC < 0)

FTC-TD-0004-Rev-001-IRSeeker Page 15 of 16 9/14/2012 10:54:00 AM

 {

 // error! - write to debug stream and then break.

 writeDebugStreamLine("Read dir ERROR!");

 break;

 }

 // Get the AC signal strength values.

 if (!HTIRS2readAllACStrength(HTIRS2, acS1, acS2, acS3, acS4, acS5))

 {

 // error! - write to debug stream and then break.

 writeDebugStreamLine("Read sig ERROR!");

 break;

 } else {

 // find the max signal strength of all detectors.

 maxSig = (acS1 > acS2) ? acS1 : acS2;

 maxSig = (maxSig > acS3) ? maxSig : acS3;

 maxSig = (maxSig > acS4) ? maxSig : acS4;

 maxSig = (maxSig > acS5) ? maxSig : acS5;

 }

 // display info

 nxtDisplayCenteredBigTextLine(1, "Dir=%d", _dirAC);

 nxtDisplayCenteredBigTextLine(4, "Sig=%d", maxSig);

 // figure out which direction to go...

 // a value of zero means the signal is not found.

 // 1 corresponds to the far left (approx. 8 o'clock position).

 // 5 corresponds to straight ahead.

 // 9 corresponds to far right.

 // first translate directional index so 0 is straight ahead.

 val = _dirAC - 5;

 // calculate left and right motor speeds.

 motor[motorC] = 50 + 30 * val;

 motor[motorB] = 50 - 30 * val;

 // wait a little before resuming.

 wait10Msec(2);

 }

}

FTC-TD-0004-Rev-001-IRSeeker Page 16 of 16 9/14/2012 10:54:00 AM

As the robot follows around the IR source, the directional output and the magnitude of the strongest

measured signal are displayed on the screen.

Figure 16 - RoboSeek.c Will Follow an AC IR Signal and Display the Direction and Max Intensity on the LCD

Figure 17 - Robot with IR Seeker and IR Soccer Ball

	Background
	Components
	IR Beacon

	IR Seeker Sensor
	Sample LabVIEW Programs
	Displaying Output of IR Seeker Sensor
	Drive to Ball Sample Program

	Sample ROBOTC Programs
	HiTechnic ROBOTC Driver
	Display IR Seeker Data
	Following an IR Source

