Using IR Beacons and IR Seeker

FTC Technical Document

Thomas Eng
9/12/2012

FTC-TD-0004-Rev-001-IRSeeker

“Seeing” the Light...

Background

The 2012-2013 FIRST Tech Challenge Ring It Up! provides infrared (IR) beacons that can be used as
navigational aids for the autonomous operation of a robot. The light that is emitted by these beacons is
not visible to the human eye. A special device, such as the HiTechnic IR Seeker (v2), can be used to
detect the IR energy and navigate towards the beacon. This document outlines the basic use of the IR
beacon and Seeker sensor.

Components

IR Beacon

The IR Beacon is made by HiTechnic (part number FTCBCN). It is powered by a 9V battery and is
equipped with two status LEDs and three IR LEDs. The red LED illuminates when the battery is running
low. The green LED indicates that power is on. The three IR LEDs flash on and off at a frequency of 1200
Hz. The light from the IR LEDs is not visible to the human eye, but can be detected by devices such as
the HiTechnic IR Seeker sensor, or even a common digital camera that does not have an IR filter
installed.

URACELL

PILE ALCALINE

Figure 1 - Hitechnic IR Beacon (Part # FTCBCN)

The IR beacon has a switch to power the unit on or off. A fresh 9V battery should be sufficient to power
the beacon continuously for several hours (approximately 4 according to the instruction sheet).
Competition organizers, however, should keep a reserve supply of fresh 9V alkaline batteries on hand
during a match.

Note that unlike the light emitted by a traditional incandescent light bulb, the light from the IR LEDs is
not omnidirectional. The strongest intensity will be measured when the sensor is directly facing an LED.
The two outer IR LEDs on the beacon have been intentionally bent inwards at the factory to provide a
stronger signal when the detector is facing the beacon at an indirect angle.

FTC-TD-0004-Rev-001-IRSeeker Page 1 of 16 9/14/2012 10:54:00 AM

IR Seeker Sensor

HiTechnic makes a sensor known as the IR Seeker (v2, part number NSK1042) that can be used to detect
and navigate towards an infrared source of energy. The sensor detects un-modulated (DC) infrared
energy, such as the light emitted from the sun or an IR heat lamp. The sensor also detects modulated
(AC) IR signals, such as the light that is pulsed from the IR beacon. In AC mode, the sensor will “tune-in”
to IR signals pulsing at either a 1200 Hz or 600 Hz frequency and ignore other IR signals. For the FTC
competitions, the IR beacons pulse at 1200 Hz, so the IR seekers should be set to the 1200 Hz AC mode.

Figure 2 - HiTechnic IR Seeker v2

The IR Seeker is equipped with five internal infrared detectors. Each detector monitors a specific sector
around the Seeker and provides an output value of 0 to 255, with 0 indicating no measured signal and
255 indicating the highest measurable value.

Detector 2

Dector 1
Detector 3

/

Detector 0 R Detector 4

Figure 3 — The IR Seeker has 5 Internal Detectors with 5 Sectors of Coverage

The IR Seeker also provides directional information. It returns a value from 0 to 9. A value of 0 implies
that an IR source was not detected. A value of 1to 9 corresponds to 1 of 9 sectors around the Seeker
(see Figure 4).

FTC-TD-0004-Rev-001-IRSeeker Page 2 of 16 9/14/2012 10:54:00 AM

Figure 4 - Seeker Provides Directional Information on the Location of the IR Signal

Note that the energy that is emitted by the IR beacon is not omnidirectional. In order to get the
strongest measured signal, it is important that the IR Seeker have the most direct line-of-sight possible.
If the IR beacon is placed at a certain height above the floor, then a robot designer should consider
placing their IR sensor at the same level, to ensure a good, direct line-of-sight to the IR LEDs. Also, in
order to measure the strongest possible signal, the IR sensor should not have any objects in the way that
obstruct the sensor’s line of sight to the LEDs.

Sample LabVIEW Programs

Displaying Output of IR Seeker Sensor

LabVIEW for NXT 2010 and later versions include the VI's needed for using the IR Seeker v2 sensor. The
VI's for the IR Seeker can be found in a HiTechnic sub menu for NXT I/O. Specifically, the VI's to use the
IR Seeker can be found under the NXT Robotics -> NXT 1/O -> Additional Sensors and Motors ->
HiTechnic Sensors -> HT Complete.

Functions @
| Q Search I @\\, Customize~ i

Select a VI...
¥ NXT Robotics
L mxTvo
L Additional Sensors and Motors

L HiTechnic Sensors

L 4T Com plete
(L ut HT P
| L
HT Read HT LEGO HT Wait For

[4
el “h

HT Config HT Datalog

Figure 5 - HT Complete Menu

FTC-TD-0004-Rev-001-IRSeeker Page 3 of 16 9/14/2012 10:54:00 AM

The HiTechnic menu includes controls to configure the IR Seeker (and put it in 600 Hz or 1200 Hz
modes). It also includes controls to read data from the IR Seeker (AC or DC modes).

Functions @
m Search I Q;) Customize™ i
Select a VI...
* MNXT Robotics
L nxT o
L Additional Sensors and Motors
L HiTechnic Sensors
L HT Complete
L HiTechnic Read
oI
Accelerometer Angle Color - Active
m &
Color - Passive Compass Rel... Compass
) T R AT
EOPD - Long Color- Raw EOPD - Short
-:"[#] 53"_"?‘_ P%_“l-f
nalog Mu Gyro IR Receiver
(T Ac (0T o} NT]
= i =
IR Seeker AC R Seeker DT IR Seeker All
ﬂ_
Magnetic Touch Mux

Figure 6 - HT Control to Read AC Data from IR Seeker

The block diagram depicted in Figure 7 is a program that continuously displays the output from the IR
Seeker onto an NXT’s LCD display. The first line of the LCD display ranges in value from 0 to 9 and
corresponds to the sector where the IR signal is the strongest (see Figure 4) with zero indicating no
source detected. The remaining lines of the LCD display show the signal strength for each of the five
internal IR detectors (numbered 0 through 4).

FTC-TD-0004-Rev-001-IRSeeker Page 4 of 16 9/14/2012 10:54:00 AM

HT g
-

—
1200 H;

Figure 7 - Sample LabView Program that Displays Beacon Direction and Signal Strength Array

FTC-TD-0004-Rev-001-IRSeeker Page 5 of 16 9/14/2012 10:54:00 AM

In this sample program the IR Seeker sensor is configured for sensor port 1 and set to 1200 Hz AC Mode
(see Figure 8). The AC mode output from the IR sensor is a clustered data stream. It includes an integer
value that indicates the direction of the IR source (0 means no signal, 1-9 corresponds to the sector map
in Figure 4). The AC mode output also includes output data from the five IR detectors that are inside of

the Seeker.

HT Wz

1ED:IH -l 2

Figure 8 - IR Seeker is Configured for Port 1 and 1200 Hz Mode

In order to process the output from the IR Seeker, the sample program uses an Unbundle block to
separate the data for processing (see Figure 9). The directional information is sent to a Display block

which lists the directional value on line 1 of the NXT’s LCD.

HT A/
4 l

Figure 9 - An Unbundle Control is Used to Extract Data from Seeker Output

The data from the Signal Strength array is sent to a series of Index Array Controls to extract the values
for the individual detectors (numbered 0 through 4). Each indexed value is then sent to a Display
control to display the value on the NXT’s LCD (see Figure 10).

)
F
I8
L

)

Figure 10 - Index Array Control Gets Value from Array and then Passes Data to Display Control

FTC-TD-0004-Rev-001-IRSeeker Page 6 of 16 9/14/2012 10:54:00 AM

Drive to Ball Sample Program
LabVIEW for NXT 2010 also includes a sample program that shows how to use the IR Seeker sensor to

make a robot follow an infrared soccer ball. To view the sample program, select “Create Program” from
the main LabVIEW screen. A “New Program” window should appear. Select “Virtual Instruments” under
the Templates section and then expand the HiTechnic folder and select “HTIRSeekerACDriveToBall.vit”

to view the sample code (see Figure 11).

43 New Program

vl -~ |

. =)

-—

Templates

Robot Project (.Ivrbt)

Virtual Instruments

£ Display o

: Mirtual Instruments (.

=13 HiTechnic
=l HT AccalTilt.vit
=) HTAnglewithReset.vit
=, HTColorActive.vit
=), HTCompassArrows.vit
=), HTEOPDDIst.vit
=) HTGyro.vit
=, HTIRReceiverOnRobat.vit
=l HTIRSeekerACDriveT oBail, _
[, HTMagnet.vit 3
3 Mators
Sensors

)

Vernier Sensors

Description

This example is for the HiTechnic
IRSeeker V2 Sensor together with the
LEGO MINDSTORMS NXT and 3
HiTechnic Infrared Ball. This program
will use the direction value from the
sensor to drive toward an IR Ball.

(@) Create £2 Cancel

FTC-TD-0004-Rev-001-IRSeeker

Figure 11 — Select HTIRSeekerACDriveToBall.vit

Page 7 of 16

9/14/2012 10:54:00 AM

The sample program shows how to take the output from the HiTechnic IR Seeker sensor and use it to

navigate towards an infrared source. If a source is not detected, the robot will point turn to the left,

looking for a signal.

& —— —
{3 HTIRSeekerACDriveToBall 4.vi Block Diagram

- #

L]
—

E)

File Edit View Operate Tools Window Help

ﬂ)l@l OIE I.;ullﬁ" oft | 15pt Application Font |~ ”;J«'-"l

R 1 [

Q IIE‘

HT IRSeeker Drive To Ball
Sensors:

Port1 IR Seeker V2

Motors:

Ports selected on Front Panel

Mo MUK v]

Direction:

Left Motor Port

Paort
Lo L]

Right Motor Port

Paort

Crog L]

Direction value is from 0 to 9 with 0 as no signal and 1 on far left, 5 in
middle, and 9 on far right. This math will convert this direction number in
motor power levels so that the robot will drive towards the IR Ball.

m

" [Main Application Instance «

FTC-TD-0004-Rev-001-IRSeeker

Figure 12 - Sample IR Seeker LabView Program

Page 8 of 16

9/14/2012 10:54:00 AM

Sample ROBOTC Programs

HiTechnic ROBOTC Driver
ROBOTC includes a driver for the HiTechnic IR Seeker V2 sensor. The driver filename is “HTIRS2-
driver.h” and it resides in a subdirectory called “drivers” in the NXT sample programs subdirectory of

ROBOTC.

For a 64-bit version of Windows, the path to the 3" party drivers should be as follows,

C:\Program Files

(x86) \Robomatter Inc\ROBOTC Development

Environment\Sample Programs\NXT\3rd Party Sensor Drivers\drivers

For a 32-bit version of Windows, the path is similar, but without the (x86) designation,

C:\Program Files\Robomatter Inc\ROBOTC Development
Environment\Sample Programs\NXT\3rd Party Sensor Drivers\drivers

In ROBOTC, you can use the Detailed Preferences menu (see Figure 13) to specify the path to include the
HiTechnic drivers.

4 ROBOTC T— B |—— (| [o e
File Edit | View | Robot Window Help
e Source: IRSeek.c |k EEA /=24 s Debug Status Refresh
——— e = = e s —
2 - System Files *lgma config(Sensor, Si, HTIRS2, sensorI2CCustom) Step Over| |Step Out —:
“CConst Listing Fi1 -
Battery i " leseek.c - a simple progzam vo demonstrave how vo use the HiTechmic IR
Bluetoot! Advanced Displays *lhis program requires che ETIRSZ-driver.h driver provided with RobotC. |
g::::; Function Library View 1
Debug Solution Explarer View sl sy can copy the "drivers" subdirectory and place it in the same directory as this source file.

Display
File Acce
High Spe|
Intemal
10 Map A
Math
Miscellar]
Motors
MultiR

Compile Errors View

Find In Files View

Display Message Log Window
Clear Message Log Window
Font Increase

Font Decrease

Ctrl<E

Cri+Hum +
Ctri+-

f vou do, vou can use the following #include statement to specify the path to the driver.
Include "drivers/HTIRS2-driver.h"

If you use the "drivers/HTIRS2-driver.h" line, you should comment out the following line.
Inde "HTIRS2-driver.n"

TextlLines is an array of strings - used to keep track of if changes to display occur.
lng sTextLines[2];

Semaph

Preferences

5 Show Splash Sereen on Startup

Sensars
SensorsIJ
Servos
Sound
Strings

Delete All Registry Values
Delete All Saved Window Positions

Reset One Time Warning Flags

Task ConL2 Code Completion

TETRIXC| ¥ | Status Bar

string cChar, int nValueDC, int nValueAC);

Auto Save Before Compile
Open Last Praject on Startup
Highlight Program Execution
Enable Logging to Message Log

// the direction of the measursd DC signal
Enable Wireless Searching for NXT

// the direction of the measured AC signal

File

& solution Exp... ZF Function Lib...

o N // the DC values from the internal IR detectors
Timing Toalbars... , = 0; // the AC values from the internal IR detectors
Undefined Entries 28 Detailed Preferences ...
User Defined 22 1200 Hz
30 tHTIRSDD = -
31
- =

IRS=ek.c” compiled on Sep 14 2012 09:36:02

Opens the preference configuration property sheet

FTC-TD-0004-Rev-001-IRSeeker

Robot TETRIX 7777 IRSeek.c RAW No compile errors

Figure 13 - Select Detailed Preferences Menu

Page 9 of 16

n13, Col 27

9/14/2012 10:54:00 AM

Switch to the “Directories” tab of the Detailed Preferences menu to specify the include file path for the

3" party drivers (see Figure 14).

.
ROBOTC Preferences [

Editor I Debugger I Intrinsic Help | Intemal I Standard Robots | Compiler I Compiler Wamings
Platform | Features | Environment | NXT | TETRIX | Diectories | Fies | NXT Directories

Browse

Directory for Source Files

Directory for User Include Files (Common)
|C:\Progmm Files (86) Robomatter Inc ROBOTC Development Environ

=zer include’ files for platform TETREE

Browse
Directory for Sample Programs
|.\Sample Programs™ Browse
Sound Resource Files Directory
|.\Sound5 Browse

Directory For Standard Robaot Model "Motors and Sensors

|.\Motorﬂnd5n3nsorl'~"|odels\ Browse

Directory For Optional Template Definttions
|.\Ternp|ates\ Browse

[ok || Ccancel Apply Help

—_— -éu

Figure 14 — Specify the Common Directory for User Include Files
Once you have your directory properly specified, be sure to put the following statement,

#include “HTIRS2-driver.h”

in your source code.

FTC-TD-0004-Rev-001-IRSeeker Page 10 of 16 9/14/2012 10:54:00 AM

Display IR Seeker Data

The following code (from “IRSeek.c”) is a sample program that polls the IR Seeker sensor and displays
the direction and signal strength from the 5 internal detectors on the screen. The “DC” values are the
output values for the un-modulated signal. The “AC” values are the output values for the modulated

signal (1200 Hz).

#pragma config(Sensor, S1, HTIRS2, sensorI2CCustom)
//
// IRSeek.c - a simple program to demonstrate how to use the

// HiTechnic IR Seeker V2 sensor. This program requires
// the HTIRS2-driver.h driver provided with RobotC.

// You can copy the "drivers" subdirectory and place it

// in the same directory as this source file. if you do,
// you can use the following #include statement to specify
// the path to the driver.

//#include "drivers/HTIRS2-driver.h"

// if you use the "drivers/HTIRS2-driver.h" line,
// then you should comment out the following line.
#include "HTIRS2-driver.h"

// sTextLines is an array of strings - used to keep
// track of if changes to display occur.
string sTextLines[8];

// function prototype
void displayText (int nLineNumber, string cChar, int nValueDC, int nValueAC);

// main task

task main ()

{
// dc and ac directional values.
int dirDC = 0;
int dirAC = 0;

// DC and AC values from 5 internal detectors.
int dcS1, dcS2, dcS3, decS4, dcS5 = 0;
int acSl, acS2, acS3, acS4, acS5 = 0;

// we are going to set DSP mode to 1200 Hz.
tHTIRS2DSPMode mode = DSP_1200;

// attempt to set to DSP mode.

if (HTIRS2setDSPMode (HTIRS2, mode) == 0)

{
// unsuccessful at setting the mode.
// display error message.
eraseDisplay();
nxtDisplayCenteredTextLine
nxtDisplayCenteredTextLine
nxtDisplayCenteredTextLine
nxtDisplayCenteredTextLine

0, "ERROR!");

2, "Init failed!");
3, "Connect sensor");
4, "to Port 1.");

// make a noise to get their attention.
PlaySound (soundBeepBeep) ;

// wait so user can read message, then leave main task.

FTC-TD-0004-Rev-001-IRSeeker Page 11 of 16 9/14/2012 10:54:00 AM

waitlOMsec (300) ;
return;

}

// initialize the array sTextLines.
for (int 1 = 0; 1 < 8; ++1i)
sTextLines[1] = "";

// display some header info at top of screen
eraseDisplay();

nxtDisplayTextLine (0, " DC AC") ;
nxtDisplayTextLine (1,

// loop continuously and read from the sensor.
while (true)

{

// Read the current non modulated signal direction
~dirDC = HTIRS2readDCDir (HTIRS2);
if (dirDC < 0)

break; // I2C read error occurred

// read the current modulated signal direction
_dirAC = HTIRS2readACDir (HTIRS2) ;
if (_dirAC < 0)

break; // I2C read error occurred

// Read the individual signal strengths of the internal sensors

// Do this for both unmodulated (DC) and modulated signals (AC)

if (!'HTIRS2readAllDCStrength (HTIRS2, dcSl, dcS2, dcS3, dcS4, dcSH))
break; // I2C read error occurred

if (!'HTIRS2readAllACStrength (HTIRS2, acSl, acS2, acS3, acS4, acS5))
break; // I2C read error occurred

displayText (2, "D", dirDC, dirAC);
displayText (3, "0", dcSl, acSl);
displayText (4, "1", dcS2, acS2);
displayText (5, "2", dcS3, acS3);
displayText (6, "3", dcS4, acS4);
displayText (7, "4", dcS5, acSh);

// wait a little before resuming.
waitlOMsec (5);

}

// Minimize LCD screen flicker by only updating LCD when data has changed
void displayText (int nLineNumber, string cChar, int nValueDC, int nValueAC)
{

string sTemp;

StringFormat (sTemp, "%$4d %4d", nValueDC, nValueAC);

// Check if the new line is the same as the previous one
// Only update screen if it's different.
if (sTemp != sTextLines[nLineNumber])
{
string sTemp2;
sTextLines[nLineNumber] = sTemp;
StringFormat (sTemp2, "%$s: %s", cChar, sTemp);
nxtDisplayTextLine (nLineNumber, sTemp2);

FTC-TD-0004-Rev-001-IRSeeker Page 12 of 16 9/14/2012 10:54:00 AM

The code listed above will continuously display the output from the IR Seeker on the LCD.

Figure 15 — The Program IRSeek.c Continuously Displays Output from Sensor

FTC-TD-0004-Rev-001-IRSeeker Page 13 of 16 9/14/2012 10:54:00 AM

Following an IR Source
The following code (from “RoboSeek.c”) uses the IR Seeker sensor to follow an infrared source (such as
an IR soccer ball or beacon) flashing at 1200Hz

#pragma config(Sensor, S1, HTIRS2, sensorI2CCustom)
//

// RoboSeek.c - This program uses the HiTechnic IR Seeker V2

// sensor to follow an IR source. This program requires the

// HTIRS2-driver.h driver provided with RobotC.

//

// You can copy the "drivers" subdirectory and place it

// in the same directory as this source file. if you do,
// you can use the following #include statement to specify
// the path to the driver.

//#include "drivers/HTIRS2-driver.h"

// if you use the "drivers/HTIRS2-driver.h" line,
// then you should comment out the following line.
#include "HTIRS2-driver.h"

// main task
task main ()
{
int dirAC = 0;
int acS1l, acS2, acS3, acS4, acS5 = 0;

int maxSig = 0; // the max signal strength from the seeker.
int val = 0; // the translated directional value.

// we are going to set DSP mode to 1200 Hz.
tHTIRS2DSPMode mode = DSP _1200;

// attempt to set to DSP mode.

if (HTIRS2setDSPMode (HTIRS2, mode) == 0)

{
// unsuccessful at setting the mode.
// display error message.
eraseDisplay();
nxtDisplayCenteredTextLine
nxtDisplayCenteredTextLine
nxtDisplayCenteredTextLine
nxtDisplayCenteredTextLine

0, "ERROR!");

2, "Init failed!");
3, "Connect sensor");
4, "to Port 1.");

// make a noise to get their attention.
PlaySound (soundBeepBeep) ;

// wait so user can read message, then leave main task.
waitlOMsec (300) ;
return;

}
eraseDisplay () ;

// loop continuously and read from the sensor.
while (true)
{
// read the current modulated signal direction
_dirAC = HTIRS2readACDir (HTIRS2);
if (dirAC < 0)

FTC-TD-0004-Rev-001-IRSeeker Page 14 of 16 9/14/2012 10:54:00 AM

// error! - write to debug stream and then break.
writeDebugStreamLine ("Read dir ERROR!");
break;

}

// Get the AC signal strength values.
if (!HTIRS2readAllACStrength (HTIRS2, acSl, acS2, acS3, acS4, acS5))

{

// error! - write to debug stream and then break.
writeDebugStreamLine ("Read sig ERROR!");
break;

} else {
// find the max signal strength of all detectors.

maxSig = (acS1l > acS2) ? acSl : acS2;

maxSig = (maxSig > acS3) ? maxSig : acS3;
maxSig = (maxSig > acS4) ? maxSig : acS4;
maxSig = (maxSig > acS5) ? maxSig : acS5;

}

// display info
nxtDisplayCenteredBigTextLine (1, "Dir=%d", dirAC);
nxtDisplayCenteredBigTextLine (4, "Sig=%d", maxSig);

// figure out which direction to go...

// a value of zero means the signal is not found.

// 1 corresponds to the far left (approx. 8 o'clock position).
// 5 corresponds to straight ahead.

// 9 corresponds to far right.

// first translate directional index so 0 is straight ahead.
val = dirAC - 5;

// calculate left and right motor speeds.
motor [motorC] = 50 + 30 * wval;

motor [motorB] = 50 - 30 * wval;

// wait a little before resuming.
waitlOMsec (2) ;

FTC-TD-0004-Rev-001-IRSeeker Page 15 of 16 9/14/2012 10:54:00 AM

As the robot follows around the IR source, the directional output and the magnitude of the strongest
measured signal are displayed on the screen.

MNET Remote Screen E

Figure 16 - RoboSeek.c Will Follow an AC IR Signal and Display the Direction and Max Intensity on the LCD

Figure 17 - Robot with IR Seeker and IR Soccer Ball

FTC-TD-0004-Rev-001-IRSeeker Page 16 of 16 9/14/2012 10:54:00 AM

	Background
	Components
	IR Beacon

	IR Seeker Sensor
	Sample LabVIEW Programs
	Displaying Output of IR Seeker Sensor
	Drive to Ball Sample Program

	Sample ROBOTC Programs
	HiTechnic ROBOTC Driver
	Display IR Seeker Data
	Following an IR Source

